
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2014 

Self Adjusting Contention Friendly Concurrent Binary Search Tree Self Adjusting Contention Friendly Concurrent Binary Search Tree 

by Lazy Splaying by Lazy Splaying 

Mahesh Raj Regmee 
University of Nevada, Las Vegas, regmeem@unlv.nevada.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Regmee, Mahesh Raj, "Self Adjusting Contention Friendly Concurrent Binary Search Tree by Lazy Splaying" 
(2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2134. 
https://digitalscholarship.unlv.edu/thesesdissertations/2134 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2134?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu


www.manaraa.com

SELF ADJUSTING CONTENTION FRIENDLY CONCURRENT BINARY SEARCH TREE BY

LAZY SPLAYING

by

Mahesh R Regmee

Bachelor of Engineering (Computer)

Tribhuwan University,IOE, Pulchowk Campus, Nepal

2008

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2014



www.manaraa.com

c© Mahesh R Regmee, 2014

All Rights Reserved



www.manaraa.com

ii 

 

  

 
THE GRADUATE COLLEGE 

We recommend the thesis prepared under our supervision by  

Mahesh R. Regmee 

entitled  

Self Adjusting Contention Friendly Concurrent Binary Search Tree by 

Lazy Splaying 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Computer Science 

Department of Computer Science  

 

 

Ajoy K. Datta, Ph.D., Committee Chair 

Lawrence Larmore, Ph.D., Committee Member 

Yoohwan Kim, Ph.D., Committee Member 

Emma Regentova, Ph.D., Graduate College Representative 

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College 

 

May 2014 



www.manaraa.com

Abstract

We present a partial blocking implementation of concurrent binary search tree data structure that is

contention friendly, fast, and scales well. It uses a technique, called lazy splaying to move frequently

accessed items close to the root without making the root of the tree a sequential bottleneck. Most

of the self adjusting binary search trees are constrained to guarantee the height of a tree even in the

presence of concurrency. But, this methodology roughly guarantees the height of a tree only in the

absence of contention and limits the contention during concurrent accesses.

The main idea is to divide the update operation into two operations: an eager abstract modification

with lazy splaying that completes quickly and makes at most one local rotation of the tree on each

access as a function of historical access frequencies; and a lazy structural adaptation with long/semi

splaying which implements top down recursive splaying of the tree that may be postponed to di-

minish contention and re-balance the tree during less contention. This way, the frequently accessed

items perform full splaying but after a few accesses only and will always appear near the root of the

tree. Whereas, the infrequently accessed items will not get enough pushes up the tree and stay in

the bottom part of the tree.

As in sequential counting based splay tree, the amortized time bound of each operation is O(log N),

where N is the number of items in the tree.
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Chapter 1

Introduction

1.1 Motivation

With the advancement of multi-core computers and disappearance of unicore computers, multi

threaded programs are not just an option but the necessity of this period. Multicore computers

make computing more effective by exploiting parallelism and utilizing all the cores to work on a

single task. To support multi threaded programs, we are in need of data structure that supports

multicore computers similar to the conventional data structures. The data structures that supports

multithreading and synchronization among the threads is now called the concurrent data structures.

It is extermely difficult to design concurrent data structures compared to sequential ones because

threads executing concurrently may interleave their steps in many ways resulting different and poten-

tially unexpected outcome. The concurrency makes the algorithm of data structures more complex

and less efficient. Multicore processors are widely being used in every processor dependent devices

these days, from high end devices to low end devices like smart phones, tablets etc. That directly

leads to the necessity of desigining an efficient algorithms of concurrent data structures. Also, there

is a challenge in designing scalable concurrent data structures that should continue supporting as

the number of concurrent threads keeps on increasing more and more.

One of the widely used search data structure in sequential context is binary-search-tree (BST) and

it provides logarithmic time complexity for all the operations provided the tree is balanced. In the

sequential context and on skewed accessed sequences, it has been accepeted that the self-adjusting

binary search trees (BST) like Splay tree are theorertically better than balanced BST like AVL and

red-black tree. But in practice, red-black tree and AVL tree outperform even on skewed sequences [1].

This is because of the overhead associated with self-adjustment. To maintain the tree balanced, upon

tree update that breaks the structural invariant of the BST, the rebalancing is immediately done

to restructure the tree to make it balance. In the concurrent context, this immediate rebalancing

1
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produces lots of contention though slightly weakened balance requirement have been suggested [2]

that still requires immediate restructuring.

1.2 Objective

Decoupling the update operations that modify the abstraction from operations that modify the tree

structure itself have been been suggested[3] to reduce the overhead of contention trading off with

restucutring requirement. Also, Technique of lazy splaying to balance the tree in concurrent context

have been studied [4] that have been claimed to be the efficient self-adjusting binary search tree. We

propose the new self-adjusting concurrent contention-friendly binary search tree in which we borrow

the similar ideas from above two approaches and make some changes to have the advantages of

both. We segregate the restructuring requirement and abstract modification requirement to reduce

contention, speedup concurrent operations of the BST and yet producing self-adjusting BST. It is

surprising that the known self-adjusting BST all modify the root with each access making it an

immediate sequential bottleneck. Our approach minimizes this bottleneck by incorporating splaying

technique on the tree in lazy manner.

Binary search tree stores an ordered set of items that supports insert, contains and delete oper-

ations and additional operations like range operations and predecessor/successor operations. The

balanced tree guarantees the time-complexity of each operation to be bounded by O(logN), where

N is the number of itmes in the tree. The average and worst case time complexity remains same if

the probability of each item being accessed is uniform. In practice, as per principal of locality, most

access sequences are non-uniform, e.g. 80% of the accesses are to 20% of the items [5] [6]. Various

self-adjusting BSTs have been suggested that moves the frequently accessed items towards the root

or the tree that gives the better average access time over many access of the items. The widely

accepted such BST is splay-tree that brings the accessed item, either by insert or contains operation

towards root with the help of technique called splaying by multiple rotations. So, the frequently

accessed items tends to be around the root of the tree and will be found faster in subsequence

accesses. Since almost all of the operations modifies the root, the root becomes the hot sequential

bottleneck resulting in non-scalable structure.

So, we will use the technique called Lazy splaying that performs at most on local tree rotation i.e.

re-structuring per access as a function of historical frequencies as a subroutine of the eager-abstract

modification technique. With this approach, those items that are accesed very frequently will get

fully splayed but over few accesses and will appear higher up in the tree, on the other hand infre-

2
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quently accessed items will get enough pushes down the tree and will remain at the bottom part of

the tree.

Our approach uses a partially internal binary search tree data structure that implements a key-value

store, that decouples the update operations into abstract operations with lazy splaying and structural

operations. Abstract operations with lazy splaying is responsible either to search for, logically delete

or insert an item to the tree and does at most one local tree rotation. Whereas, Structural operations

rebalance the tree by executing longsplaying, semisplaying that may cause multiple rotations as well

as physically removing nodes that have been deleted logically.

Moreover, as the re-structuring of the tree creates the accessive contention, separating this process

from abstract modification produces less contention during concurrency and the lazy splaying re-

solves the standard splaying root-bottleneck, making this technique efficient, scalabale and highly

concurrent BST. Modification and rotate operations are to be done with proper locking and in a con-

sistent way. However counting the total no. of operations in different parts of the tree can be done

asynchronously withoug using lock. This may create a synchronization issue on these counters but

is tolerated as the inaccuracies in these counters will have negligible effect on the performance and

have been extensively examined experimentally [7]. So, this eliminates the extra locking operations

necessary to synchornize counters and improves the perfomance significantly.

1.3 Outline

In chapter 1, we briefly discussed the reason behind choosing this particular area as a thesis research

topic. We then discussed about objective of the research topic.

In chapter 2, we give brief overview of concurrent vs sequential programming and discuss why they

are important in the multi-core era. We will then explain about concurrent data structures. In the

various subsections under this section, we will explain how those data structures are designed, how

are they classified, and how are they verified to check if they are implemented correctly. As, we will

use some idea from regular sequential splay tree, we will briefly discuss about it.

In chapter 3, we will go over various existing implementation ideas that are related in some way to

our implementation. We will give the short implementation of the algorithms presented on those

papers that we have researched during our implementation. We will see their suitable usage and

discuss about their pros and cons. Our main focus will be in the lock-based implementaion of binary

3
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search trees and the techniques used to self balance those trees. Many papers related to contention

friendliness have been researched.

In chapter 4, we will give the overview of our approach. We will discuss all the fundamentals that

are needed in our implementation. These includes, lazy splaying, eager-abstract modification, lazy-

structural adaptation. We will explain briefly about those techinques and how they are used in our

implementation.

In chapter 5, we first introduce the data-structure that are needed in our implementation. The

data structure includes the node of the tree, the various fields that are needed for the node and the

binary-search tree that we will be referring in our implementation. we will then give the pseudocode

algorithm of all the operations involved. To make the working of those algorithms clear, we will give

some figures too that shows the working of the operation.

In chapter 6, we conclude our implementation and give some ideas that can be done as future work.

4
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Chapter 2

Background

2.1 Multi Processor Programming

In computer technology, Moore’s law has been existed for almost 50 years and it is still valid.

Though, more and more transistors can be packed into a single chip, the clock speed can’t be in-

creased because of overheating. This is the reason behind the development of multi-processor and

multi-core architecture in order to speedup modern computers. These computers are capable of han-

dling operations at the same time in hardware level increasing performance of the computer. With

the invention of this technology, parallelism in both hardware and software program are developed.

Parallelism in software program is also called concurrency. Hardware and software program both

executes the threads simultaneously in a safe manner in the physical cores or logical cores of the

machine.

Figure 2.1: The shared memory architecture

Shared-Memory multi processors systems are the systems in which the multiple threads or processors

executes concurrently and communication between threads are done via shared memory. Fig. 2.1[8]

shows the shared memory architecture. Based on the location of shared memory there exists SMP

5
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symmetric multiprocessor and NUMA non-uniform memory access architectures. In an SMP archi-

tecture, both processors and memory hang off a bus. This works well for small-scale systems. In a

NUMA architecture, each processor has its own piece of the memory. Accessing your own memory

is relatively fast, and accessing someone elses is slower. Usually NUMA machines also have caches,

in which case they are called CC-NUMA machines, for cache-coherent NUMA [8]. The figures for

these architecures are shown in Fig. 2.2[8].

Figure 2.2: The SMP and CC-NUMA architecture

2.1.1 Sequential and Parallel Programming

A process is an instance of a program running in a computer. It is the basic entity that can be

executed in a computer. Thread is contained inside a process and same process can have multiple

threads in it. A computer program contains several processes and each process may have multiple

threads. In general, given the same input data, a sequential program will always execute the same

sequence of processes and each process is associated with a single thread of control and it will always

produce the same results and its execution is deterministic. Sequential program can only execute

one task at a time. Fig. 2.3 shows the sequential execution of the program.

These days almost every computer supports processes with multiple threads within a single process

itself. Threads shares the same address space within that process. These multiple threads in a process

can be executed at the same time in multi-processor or multi-core architecture and is called parallel

execution of the threads. This allows the flexibility of doing multiple tasks at once. This greatly

enhances the performance of operating system and efficient use of CPU. However, programming in

such architecture is difficult and requires special attention and knowledge. It may sometimes causes

waste of resources if program is inefficiently written. Parallel program exectues as shown in Fig. 2.3

6
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Figure 2.3: Sequential and parallel execution of threads

2.1.2 Concurrent Programming

Concurrent programming is the one in which several computations are executing during overlapping

time periods concurrently instead of sequentially (one completes before the next starts) [9]. If the

multiple software threads running at different cores tries to access same memory or some shared

resources, concurrency arises. In single CPU system the concurrency is observed only logically.

They use the time-sharing technique to share the same CPU within multiple threads.(e.g. Fig. 2.3

shown time sharing). So, pure concurrent programming is actually achieved by software not the

hardware. However, parallelism in hardware like multi-processor system or multi-core systems are

more efficient than single processor system in terms of concurrency.

Figure 2.4: Concurrent execution of threads

2.2 Concurrent Data Structures

Concurrent data structure allows concurrent threads to store, organize and access the data on a

shared memory system. It is not as simple as sequential data structure to design because the

concurrent threads are executing asynchronously and may interleave their steps in many ways,

many of them may not be desirable and produces unexpected outcome. In this section, we will

discuss the challenges involved in designing concurrent data structures, the correctness criteria and

various implementation techniques.

7
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2.2.1 Designing Concurrent Data Structures

Designing concurrent data structures are significantly more difficult and its verification to check

correctness is even more difficult than their sequential counterparts. The primary source of this

additional difficulty is concurrency, exacerbated by the fact that threads must be thought of as being

completely asynchronous: they are subject to operating system preemption, page faults, interrupts,

and so on. This is because of the several features of shared-memory multi processors system at

hardware level. On today’s machines, the layout of processors and memory, the layout of data

in memory, the communication load on the various elements of the multiprocessor architecture

all influence performance. Furthermore, there is a tension between correctness and performance:

algorithmic enhancements that seek to improve performance often make it more difficult to design

and verify a correct data structure implementation.

2.2.2 Performance

The speedup of an application when run on P processors is the ratio of its execution time on a single

processor to its execution time on P processors. This measures the utilization of the machine by

the running application. We want linear speedup i.e, we would like to achieve a speedup of P when

using P processors. If the data structure’s speedup grows with P, we call it scalable.

In practice, we can’t make all the threads execute every-time utilizing all the cores. There may be

a chance at most one thread executes for some small period and we call this sequential bottleneck

(all other threads remains idle for that period of time). And, such sequential bottlenecks can have

a surprising effect on the speedup one can achieve.

Amdahls Law [10] characterizes the maximum speedup S that can be achieved by n processors

collaborating on an application, where p is the fraction of the job that can be executed in parallel.

Assume, for simplicity, that it takes (normalized) time 1 for a single processor to complete the

job. With n concurrent processors, the parallel part takes time p/n and the sequential part takes

time 1 - p. Overall, the parallelized computation takes time: 1 - p + p/n. Amdahls Law says that

the speedup, that is, the ratio between the sequential (single-processor) time and the parallel time,

is: S = 1/(1 - p + p/n). This implies that if just 10% of our application is subject to sequential

bottleneck, the best possible speedup we can achieve on a 10-way machine is about 5.3 : we are

running the application at half of the machine’s capacity. This means, reducing the number and

length of sequentially executed code sections is thus crucial to performance and in the context of

locking, reducing the number of locks acquired, and reducing lock granularity, a measure of the

8
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number of instructions executed while holding a lock.

2.2.3 Blocking and Non Blocking Techniques

Shavit and Moir discussed about some standard techniques in designing such concurrent data struc-

tures [10]. Mainly there are two broad categories of concurrent algorithms viz Blocking and Non

Blocking. Each of these techniques have their own pros and cons.

Blocking technique uses lock to prevent race conditions in the shared part of the data structure. In

blocking technique also there exists two kinds of locking Coarse-grained and Fine-grained locking

depending on granularity of the lock.

In Coarse-grained locking, single lock of large granularity is used to protect the entire data structure.

One thread runs until it is blocked by an event that normally would create a long latency stall. Such

a stall might be a cache-miss that has to access off-chip memory, which might take hundreds of CPU

cycles for the data to return. Instead of waiting for the stall to resolve, a threaded processor would

switch execution to another thread that was ready to run. Only when the data for the previous

thread had arrived, would the previous thread be placed back on the list of ready-to-run threads [11].

This technique however have mainly three problems [10] sequential bottleneck , memory contention

and progress delay.

In Fine-grained locking multiple locks of small granularity is used to protect different parts of the

data structure to allow concurrent operations to proceed in parallel when they do not access the

same parts of the data structure. This technique is widely used to avoid excessive contention for

individual memory locations. It is also not and ideal choice as it may suffer from problems like

unnecessary memory traffic due to local spinning, false sharing and deadlocks.

Non Blocking technique tries to overcome the various problem associated with the blocking tech-

nique. There exists various nonblocking progress conditions-such as wait-freedom [12] [13], lock-

freedom [12], and obstruction-freedom [14].

Wait-freedom is the strongest non-blocking guarantee of progress, combining guaranteed system-

wide throughput with starvation-freedom. An algorithm is wait-free if every operation has a bound

on the number of steps the algorithm will take before the operation completes.
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Lock-freedom allows individual threads to starve but guarantees system-wide throughput. An algo-

rithm is lock-free if it satisfies that when the program threads are run sufficiently long at least one

of the threads makes progress. All wait-free algorithms are lock-free.

Obstruction-freedom is the weakest natural non-blocking progress guarantee. An algorithm is

obstruction-free if at any point, a single thread executed in isolation (i.e., with all obstructing

threads suspended) for a bounded number of steps will complete its operation. All lock-free algo-

rithms are obstruction-free.

Among the progress conditions, stronger progress condition seems always desirable, but implementa-

tion of such condition in designing and verifying its correctness is difficult than the weaker progress

conditions. In practice weaker progress conditions are tolerated by employing a technique called

back off [15] to make the implementation simple and easier.

2.2.4 Correctness

For a sequential data structure to be correct it has to satisfy safety condition and should agree with

the legal sequential specification of that object. For, a concurrent data structure to be correct, safety

condition only is not good enough, it has to satisfy certain liveness condition as well. However, safety

condition in concurrent data structure is not as straight forward as in sequential data structure. So,

following are the various correctness properties defined for concurrent data structure.

Quiescent Consistency

Given a concurrent execution history of an object, if all operations appear to occur in some sequential

order and nonoverlapping operations appear to occur in real-time order then the object is called

quiescently consistent. We should assume, each operation accesses a single object. Operations not

separated by quiescence may not occur in program order. E.g., A enqueue x and then y ; our dequeue

operation overlaps both enqueues, and we come out with y.

Sequential Consistency

Given a concurrent execution history of an object, if all operations appear to occur in some sequen-

tial order and the order is consistent with each thread’s program order then the object is called

sequentially consistent. It requires that method calls act as if they occured in sequential order

consistent with program order. We should assume, each operation accesses a single object.

10
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Linearizability

Given a concurrent execution history of an object,if the system is sequentially consistent and the

sequential order is consistent with real time; i.e., all operations appear to happen between their

invocation and response then the object is called linearizability. We should assume each operation

accesses a single object.

2.3 Splay Tree

A splay tree is a self-adjusting binary search tree with the additional property that recently accessed

elements are quick to access again. Because the shape of a BST is determined by the order that data

is inserted, we run the risk of trees that are essentially lists in the worst case. Worst case for a single

BST operation is O(N). It is not so bad if this happens only occasionally, but its not uncommon for

an entire sequence of bad operations to occur. In this case, a sequence of M operations take O(M

* N) time and the time for the sequence of operations becomes noticeable. Splay trees guarantee

that a sequence of M operations takes at most O( M * log N ) time. We say that the splay tree has

amortized running time of O( log N ) cost per operation. Over a long sequence of operations, some

may take more than log N time, some will take less.

The basic idea of the splay tree is that every time a node is accessed, it is pushed to the root by a

series of tree rotations. This series of tree rotations is knowing as splaying.

If the node being splayed is deep, many nodes on the path to that node are also deep and by

restructuring the tree, we make access to all of those nodes cheaper in the future.
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Chapter 3

Literature Review

Lots of big computer organization are pushing themselves towards multi processors and multi-core

architecture. To support the growing need of those companies plenty of research are being done in

the field of concurrent data structure. Most of the research are focused in making the concurrent

version of sequential common data structure like stack, queue, linked list and binary search trees.

The concurrency creates lots of technical and implementation difficulties in designing the concurrent

data structure due to bad interleaving of the steps of various operations.

Implementation of various concurrent search structures based on all the techniques discussed above

in section 2.2.3 has been done in the literature.

3.1 Universal Transformation

Herlihy [16] has a translation protocol that takes as input the sequential algorithm and produces

equivalent non-blocking concurrent algorithm. His first transformation does the copying of the entire

object, making necessary changes to it and trying to replace the old object by CAS operation. ”It

compares the contents of a memory location to a given value and, only if they are the same, modifies

the contents of that memory location to a given new value. This is done as a single atomic operation.

The atomicity guarantees that the new value is calculated based on up-to-date information; if the

value had been updated by another thread in the meantime, the write would fail” [17].

For large objects, copying the whole object made this an impractical solution. He then proposed

another transformation protocol. Each data structure is made up of blocks connected by pointers.

Only the blocks which are modified or contain the pointers to the blocks which are to be modified

need to be copied. Again it has some drawbacks, first there was still a lot of copying, second

programmer had to go extra mile to break the structure into proper blocks and third for some data

structure like priority queue implemented as linked list no decomposition performs well.
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3.2 Stacks and Queues

Stacks and Queues are the fundamental sequential data structure. However, there arises plenty of

issues in designing concurrent version of these data structures that clearly illustrates the challenges

encountered in designing concurrent data structures that supports multi-processor shared memory

system.

A concurrent stack is a data structure linearizable to a sequential stack that provides push and pop

operations with the usual LIFO semantics.

Treiber [18] introduced a lock-free implementation of stack. He used the singly-linked list to rep-

resent the stack with top pointer and used CAS atomic instrucution to modify the value of top

pointer atomically. However, top pointer is a sequential bottleneck in this approach so it suffers

from scalability problem as concurrency increases. Importantly, this implementation will have ABA

problem [19] that plagues many CAS-based algorithm.

Michael and Scott presented a simple lock-based concurrent stack implementation based on sequen-

tial linked lists with a top pointer that uses global lock to control access to the stack [20].

A concurrent queue is a data structure linearizable to a sequential queue that provides enqueue and

dequeue operations with the usual FIFO semantics.

Michael and Scott [19] presented a simple lock-based queue implementation based on sequential

linked list and that uses two separate locks for the head and tail pointers. This will allow execution

of enqueue and dequeue operations parallel.

Herlihy and Wing [21] proposed a lock-free array-based queue that works if one assumes an un-

bounded size array.

3.3 Search Structure

Data structures that allows the efficient retrieval of an element from the set of elements are called

search structures. This includes unordered list, array, hash-table, binary search trees etc. Due to

the excessive use of these data structures in the computer industry these days, lots of researches

are being carried on in implementing the efficient concurrent search structures. Binary Search Tree
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(BST) being the most prevalent one.

3.3.1 Binary Search Tree

A binary search tree is a data structure that supports three main operations, insert(k), delete(k) and

find(k). Concurrent implementation of any search tree can be done by protecting it using a single

exclusive lock (global lock). In this implementation, concurrency can be improved by using reader-

writer lock to allow the find(k) operation to execute concurrently with each other while holding the

lock in shared mode. This may be inefficient if there are many update operations. The exclusive

lock does produce sequential bottleneck that degrades the overall performance substantially. If fine-

grained locking technique is used that employs one lock per node instead of single lock for entire

tree, we can improve concurrency further.

There exists various self-adjusting binary search trees (BSTs) that restructures itself based on certain

conditions to make the overall operations efficient. The restructuring is done using tree rotations

that does not effect the BST’s property. AVL tree is a balanced binary search tree which triggers

the rebalance operation once the length of longest path exceeds the shortest path by 2 [22]. A red-

black tree however triggers the rebalance operation only when the length of longest path exceeds

the shortest path by two times [23].

The splay tree is also a self-adjusting BST that moves the accessed node towards the root by rotation,

which is called splaying. Rotation is done based on the position of the involved nodes: currently

accessed node, its parent node and its grand parent node. Unlike self-balancing trees like AVL tree

or Red-Black tree, splay tree doesn’t self balance itself. CBTree (Counting based tree) is a variation

of splay tree that moves the node towards the root based on the number of times the node is accessed

by insert and find operation.

Bronson et al. presents a concurrent relaxed balance AVL tree algorithm that is fast, scales well, and

tolerate contention [24]. Implementing a full rebalancing is generally a bottleneck in a concurrent

tree. Indeed, it must acquires locks for all nodes that will be rebalanced. That is why the author

decided to use a relaxed balance AVL Tree instead of a strict one. In a relaxed balanced tree, the

condition can be violated by the operations and is not always restored by rebalancing, but may be.

It introduces the concept of version numbers and a hand-over-hand optimistic validation to achieve

mutual exclusion when different thread intend to re-balance the tree after insertions or deletions. It

uses the optimistic concurrency control, but carefully manage the tree in such a way that all atomic
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regions have fixed read and write sets that are known ahead of time. Hand-over-hand optimistic

validation is a concurrency control mechanism for searching and navigating a binary search tree.

Version number is the key to achieve mutual exclusion in the algorithm. Each node’s version num-

ber represents a status of the node that is being accessed. The tree used in this algorithm has the

particularity to be a partially external tree. An external tree is a tree in which all the information

is only contained in leaves. An external tree has the advantage to make removal easy at the cost of

increasing the average path length and the memory footprint. In a partially external tree, routing

nodes (nodes with no information) are only inserted during removal operation. Moreover, routing

nodes with only one child are removed during rebalancing. This makes removal easier and does not

increase too much the average search path length. Another advantage of this technique is that a

routing node can be converted to a value node and vice-versa only by changing its value.

It is difficult to design an efficient non-blocking data structure that guarantees wait-freedom. There

exists universal technique to derive a concurrent wait-free data structure from its sequential version

[25]. But the the tree from this transformation is quite inefficient because the universal construction

will work either applying operations to the data structure in serial mannner or copying the entire

data structure or part of it and applying the operation to the copy and then updating the relevant

part of the data structure to point to the copy.

Ellen et al. proposes the first complete, non-blocking, lineraizable BST implementation using only

reads, writes, and single-word compare-and-swap (CAS) operations [26]. It does not use large words,

so it can be run directly on existing hardware. Updates to different parts of the tree do not interfere

with one another, so they can run concurrently. Searches only read shared memory and follow tree

edges from the root to a leaf so they do not interfer with updates, either. It uses leaf-oriented BST

, in which every internal node has exactly two children, and all keys currently in the dictionary are

stored in the leaves of the tree. Internal nodes of the tree are used to direct a find operation along

the path to the correct leaf. Helping strategy is used similar to Barne’s technique [27] to improve

performance of the operations. Helping can often contribute to poor performance because several

processes try to perform the same piece of work. Thus they choose a conservative heling stragety:

a process P helps another process’s operation only if the other operation is preventing P ’s own

progress.

Natarajan, Savoie and Mittal suggested a wait-free implementaion of concurrent red-black tree in an

asynchronous shared memory system that supports search, insert, update and delete operations us-
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ing single-word compare-and-swap instruction [25]. Compared to other existing wait-free algorithm,

this one has better properties that: it uses only single word CAS instruction, which is common

in most of the hardware these days, it doesn’t uses additional underlying system support such as

transactional memory and it doesn’t allow the tree go out of [28] for deriving a concurrent wait-free

tree-based data structure from its sequential counterpart.

Raynal et al. proposed the non-blocking implementation of skip list [29] a new non-blocking skip

list algorithm. This algorithm minimizes contention by localizing synchronization at the least con-

tended part of the structure without altering consistency of the implemented abstractions. They

proposed the first binary search tree algorithm designed for speculative executions [30]. In contention

friendly BST implementation [3], they discussed the implementation of lock-based concurrent binary

tree using some unique methodology called contention friendliness. All these three implementation

uses the same concept of dividing update operations into two parts. One that modifies abstraction

state of the tree that returns rapidly for efficiency reason and the other that modifies structural state

that runs in the background. The key idea is to diminish the contention induced due to concurrency.

Afek et al. proposed the implementation of concurrent search tree by lazy splaying [7]. Though this

technique can be used to replace re-balance operation of any binary search tree to make it balanced,

they used the Bronson et al tree [24] and replaced the re-balancing code with the lazy splaying

re-balancing technique. The main idea of this implementation is to eliminate the sequential hot spot

at the root caused by various self adjustment operations involved. This is done by introducing lazy

splaying because it is fast and highly scalable and makes at most one local adjustment to the tree

on each access as function of historical frequencies (no. of accessed made to that particular node).

Afek, Tarjan and company presented the implementation of a practical concurrent self-adjusting

search tree called CBTree (Counting Based Tree) [4] that scales with the amount of concurrency,

and has performance guarantees similar to the splay tree. CBTree maintains a weight for each subtree

S, equal to the total number of accesses to items in S. The CBTree uses the operations similar to

splay trees, but rather than performing them at each node along the access path, decisions of where

to rotate are based on the weights. The CBTree does rotations to guarantee that the weights along

the access path decrease geometrically thus yielding a path of logarithmic length.
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Chapter 4

Methodology

In this section, we will discuss the overall ideas of our implementation technique. In most of the

self-adjusting implementation of concurrent binary search tree (BST) the contention is produced

when there is an overhead of rotations induced by various operations that tends to access the same

part of the tree towards the root. As long as property related to binary search tree is satisfied we

can postpone the self-adjustment or restructuring of the tree in-order to minimize the contention

during highly concurrent access of the tree. And when there is less contention the re-balancing

operation can be performed. The most frequently used operation in any search structure including

binary search tree is the search (or contains) operation, if we figure out someway to implement this

operation as partial-blocking implementation then this operation itself makes the overall algorithm

efficient. We will discuss the technique used to avoid contention during traversal of the tree that

still preserves its correctness in later chapters. The main idea in contention friendly methodology

is to separate each update into an eager abstract modification and a lazy structural adaptation.

The supporting ideas includes lazy deletion (a technique in which the node to be deleted is logically

deleted) and lazy splaying that rotates the tree locally at most once and helps in adjusting the tree

structure bringing frequently accessed items towards the root.

4.1 Lazy Splaying

A binary search tree is a recursive data structure containing a set of items each with a value from

a totally ordered domain. Each node n have a value associated with it n.key such that, the left

subtree of n holds items smaller than n.key and the right subtree holds items larger than n.key.

All the operations on BST starts by searching an item in the BST going down from the root an

goes left or right at each node depending the searched item is smaller or larger than the item at n,

respectively until reaching a node containing the item, or an empty subtree indicating the item is

not in the tree. This will be the spot where new items can be inserted.
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Similar to splay tree technique, the tree rotation is performed at the node containing the item we

operate on, moving subtrees with more frequently accessed nodes one level up whereas moving less

accessed subtrees one level down. The operations we perform in this technique are called zig-zag or

zig operations as in regular splay tree. Unlike regular splay tree, splaying operations that involves

other rotation like zig-zig, we perform only two operations zig-zag or zig. These rotations are also

only performed if certain conditions are met at the particular accessed node. We maintain the coun-

ters in each node to keep track of the total number of operations performed to that particular node.

So, based on the values of counters we perform zig or zig-zag operation.

As these operations are performed at most once and done locally this doesn’t produces contention

that much during concurrency. Also, we need to lock only few nodes and are taken in order from

the parent to child and sometimes grand parent too which affects the tiny portion of the tree and

will be local. we will discuss about these operations in detail later in Chapter 5.

4.2 Eager Abstract Modification

In most of the existing self-adjusting binary search tree, once the structure gets updated either by

insertion or deletion, the structure is checked if it satisfies its height property (like different threshold

for different trees e.g AVL, red-black, 2-3 tree ) and the tree is structured accordingly and will be

considered this as the part of the same operation. Though, the update operation effects only the

smaller portion of tree this restructuring may affect globally and potentially conflicts with other

concurrent updates resulting higher contentions [3].

So, our approach is to minimize this global modification caused by re-balance operation. This is

done by returning eagerly as soon as modifications of the update operation that only cares the

BST property with at most one local adjustment is done. This way the update operations by re-

turing eagerly, each individual process can move on to the next operation prior to adapting structure.

However, we will introduce lazy splaying in the update operation itself if necessary that still doesn’t

effect the tree globally but gives the advantage of re-structuring and frequently accessed items are

brought towards the root at least by one level.

This technique does not guarantee the big-oh complexity of access operations of BST as the tree is

not structured as soon as update operation is performed but such complexity may not be of that

much importance during concurrent executions.
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The node that are to be deleted by delete operation are not deleted physically but marked as deleted

and is called lazy deletion. As delete operation changes the structure of a tree and causes lots of

contention, this technique of lazy deletion is implemented. This will have advantage in later insert

operations too, those nodes that have been marked as deleted but not physically removed can be

added back by simply un-marking the node if it happens to be the same node and will not produce

contention due to insert operation.

4.3 Lazy Structural Adaptation

This technique mainly deals with the restructuring of the BST that was postponed during above

operation. As this is done when there is no concurrency so it is called lazy. Separate background

thread is dedicated to perform this operation. This operation has nothing to do with the BST prop-

erty so it mainly involves multiple rotations of the tree to balance the tree. So, the lineraziablity

of update operation of this algorithm doesn’t depend on this technique but the abstract update

operation [3].

There can be any re-balancing method inside this technique. As we are dealing with self-adjustment

that balances the tree and brings the frequently accessed items towards the root, we will basically

implement the technique called ”Semi and Long Splaying” in it. We will discuss ”Long Splaying”

in next section.

The main advantage of postponing the re-structuring operation is to enable merging of multiple

adaptation in one simplified step. So, many abstract modifications may induce single structural

adaptation which in turn reduces the contentions produced by abstract modifications. Also, various

adaptations may compensate each other as the combination of two restructuring can be idempotent

e.g. left rotation and right rotation at the same node may lead back to initial state.

In addition to above task, this operation has one extra responsibility of deleting the node that were

lazily deleted during delete operation if it is safe to do so and if the removal of node generates

less contention. As, removing a node in a tree is expensive operation that requires locking and

invalidating a larger portion of the structure. So, nodes that are lazily deleted and have at least one

of their children as empty subtree are removed.
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4.4 Top Down Splaying

Bottom-up splaying requires traversal from root to the node that is to be splayed, and then rotating

back to the root. In other words, we need to make two tree traversals. We would like to eliminate

one of these traversals.

Its very easy to do this, each time we follow a left link (from let us say, node x ), then x and its

right subtree are all >than the node which will eventually become the root. So, we save x and its

right subtree in a separate tree, which we will call R. The symmetric case (following a right link)

identifies subtrees which will become part of the new roots left subtree, which we will call L.

The three reorganization cases for Bottom Up Splay Trees were zig, zig-zig, and zig-zag. Top-Down

Splay Trees use only 2 cases: zig and zig-zig. zig-zag is reduced to a zig, and either a second zig, or

a zig-zig. Each of these cases are shown in Fig. 4.1, Fig. 4.2 and Fig. 4.3

X

Y

YL Yr

XR

L R L R

X

XR

Y

YL Yr

Case 1: Zig

Figure 4.1: Zig case of Top-Down-Splaying. If Y should become root, then X and its right subtree
are made left children of the smallest value in R, and Y is made root of center tree
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Case 2: Zig-Zig
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Figure 4.2: Zig-Zig case of Top-Down-Splaying. The value to be splayed is in the tree rooted at Z.
Rotate Y about X and attach as left child of smallest value in R

4.5 Semi and Long Splaying

As mentioned before, lazy splaying uses the values of counter of each node that holds the number

of operations performed to that particular node. But in concurrent fashion, the maintenance of

counter itself is an overhead that needs synchronization and co-ordination. In order to get rid of this

overhead the counter update is done asynchronously which is un-safe. This is because, the locks are

not used during counter update and may suffer from race hazards. This incorrect values however

will not impact the correctness of the operations and may only effect during re-structuring of the

tree. But, it has been shown by the experiment that these inaccuracies have negligible effect on the

performances [4].

4.5.1 Semi Splaying

A major drawback of regular splaying is the large amount of restructuring it does. Each splaying

operation may induce rotations all the way to the root. We will now discuss the technique that

reduce the amount of restructuring but preserve at least some of the properties of splay trees [31].

21



www.manaraa.com

Case 3: Zig-Zag(Simplified)
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Figure 4.3: Zig-Zag case of Top-Down-Splaying. The value to be splayed is in the tree rooted at Z.
To make code simpler, the Zig-Zag rotation is reduced to a single Zig. This results in more iterations
in the splay process.

SemiSplaying technique modifies the restructuring rule of Splaying so that it rotates only some of

the edges along an access path, thus moving the accessed node only partway toward the root. Semis-

playing, differs from ordinary bottom-up splaying only in the zig-zig case: after rotating the edge

joining the parent p(x) with the grandparent g(x) of the current node x, we do not rotate the edge

joining x with p(x)), but instead continue the splaying from p(x) instead of x [31]. SemiSplaying

steps are shown in Fig. 4.4.

Semisplaying operation is performed to reduce the depth of every node on the access path to at

most about half of its previous value. Furthermore, only one rotation is performed in the zig-zag

case, but two steps are taken up the tree. There are different variants of semisplaying, but we will

be using top-down version of semisplaying technique.

As in topdown splaying, we maintain a left tree, a middle tree, and a right tree. In addition we
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maintain a top tree and a node top in the top tree having a vacant child. The relationship among

the trees is that all items in the left tree are less than the accessed item i and also less than those

in the middle tree. All items in the right tree are greater than i and also greater than those in the

middle tree. All items in the left, middle, and right trees fall between the item in top and the item

in its predecessor in the top tree if the vacant child of top is its left, or between the item in top and

the item in its successor in the top tree if the vacant child of top is its right. Initially the left, right,

and top trees are empty and the middle tree is the entire original tree.

Let i be the item to be accessed. Each splaying step requires looking down two steps in the middle

tree from the root and restructuring the four trees according to whether these steps are to the left or

to the right. If i is in the root of the middle tree, we combine the left, middle, and right trees as in

the completion of top-down splaying and then make the root of the combined tree (which contains

i) a child of top, filling its vacancy. This completes the splaying. On the other hand, if i is not in

the root of the middle tree, we carry out a zig, zig-zig, or zig-zag step as appropriate.

The zig and zig-zag cases are exactly as in topdown splaying. They do not affect the top tree. The

zig-zig case is as illustrated in Fig. 4.5. Suppose that the access path to i contains the root x of the

middle tree, its left child y, and the left child of y, say z. We perform a right rotation on the edge

joining x and y. Then we assemble all four trees as in the terminating case, making node y (now the

root of the middle tree) a child of top and making the left and right trees the left and right subtrees

of y. Finally, we break the link between z and its new parent, making the subtree rooted at z the

new middle tree, the rest of the tree the new top tree, and the old parent of z the new top. The left

and right trees are reinitialized to be empty.

4.5.2 Long Splaying

As the counter are updated in asynchronous and un-safe manner, the height of tree may potentially

go larger than 2*LogN. To avoid this, We will add a safety belt watch-dog check in the code of each

operation, that checks if a node at depth larger than 2*LogN is reached then full semisplaying is

performed. Though this happens rarely, this is done as a measure of protection and guarantee on

worst- case per operation performance.
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Figure 4.4: Semi-Splaying. Node x is the current node of splaying
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Figure 4.5: Zig-Zig case of Top-Down-SemiSplaying.
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Chapter 5

Proposed BST Algorithm

We discussed the overview of techniques and functions used in our approach in previous section. In

this chapter, we will mainly discuss the detailed implementation of all those operations and design

the model of our implementation. These includes, the data structure used to represent a tree, node

representation and its attributes, the locking technique used. Finally, we will write detail algorithms

to all the operations of abstract and structural categories. We need some helper function in-order

to complete the main operations and we will give algorithm to those functions as well.

5.1 Data Structures

We are designing a partial lock-based concurrent binary search tree that implements all the classic

insert/delete/find operations. We mean partial because the traversal or search operation doesn’t

use lock. The tree is designed as a map object that supports remove and rotate operations, re-

structuring operations and abstract operations. we will present the pseudo code to those operations

later.

5.1.1 Node

Each node contains the following fields: a key k, pointers l and r to point to the node’s left and

right child, a lock field to lock the node when needed, a delete flag for lazy deletion, a remove flag

that indicates if the node is physically removed, selfCnt which in an estimate on the total number

of operations that has been performed on the node x, rightCnt and leftCnt which are an estimate

on the total number of operations that have been performed on items in the right and left sub-trees

of node x respectively.

5.1.2 Binary Search Tree-BST

In concurrent environment, binary search tree are broadly classified as either internal or external. In

internal trees, key-value are stored at every node, while In external trees, values are only stored in leaf
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nodes and the non-leaf nodes are referred as routing nodes, each of these has two children. External

trees are mostly used for non-blocking implementation as both the delete and insert operations effect

the leaf nodes and routing nodes are manipulated accordingly. We use regular internal binary search

tree whose implementation is simple and to make the remove operation easy, we use lazy deletion

technique.

5.2 Operations

We will now discuss the various operations that our BST supports. We call our algorithm a partial

blocking implementation of concurrent BST. This is because, some operations are non-blocking

and some are blocking. Those operations that are frequent and occurs concurrently that generates

contention are made non-blocking. As every operation needs tree traversal and it is the longest part of

the operation, we will make the traversal contention friendly. Overall operations are broadly classified

into three type. They are contention friendly operations, background re-structuring operations and

basic abstract operations.

5.2.1 Contention Friendly Operations

Basic abstract operations like, insert, delete involves the traversal operation to find the proper loca-

tion or the node in the tree to apply those operations. Once the location is identified only a single

node is effected. In case of delete just flagging the node to indicate the node is deleted is done. In

case of insert proper child pointer update to point to new node (or if it happens to be the lazily

deleted node, unflagging that node) is performed. Also, the lazy splaying operations requires to lock

few neighboring nodes in order to perform local rotations like zig and zig-zag rotations which may

effect the parallel traversal initiated by other threads. There exists various technique to obtain syn-

chronization during traversal such as hand-over-hand locking that ensures the traversal is in track

during concurrent rotations [24] or optimistic strategy using transactional memory approach and

validating the traversal and if not valid re-starting the traversal [8].

We will use the same technique as Raynal described in contentional friendly BST [3] that modifies

some rotation operations to make the traversal contention friendly even during lazy splaying process.

Following is the list of different operations:

1. removeNode

As we are implementing concurrent internal binary search tree that holds key-values at each

internal nodes as well. The delete operation is overhead and requires precaution that may
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need to lock many nodes in order to ensure the other concurrent traversal is in right track.

Instead, we will just the flag the node as deleted allowing rest of the operation proceed via that

node. The physical removal of nodes that has already been flagged deleted are done once in a

while by background thread if it is safe to do so and it produces less contention. Those nodes

that are lazily deleted and have only one or no child are physically removed during this process.

The algorithm for this operation is given as Algorithm. 5.1 and performed as shown in Fig. 5.1.

The node to be deleted and its parent are locked. The child pointer of parent node p is updated

to point to the child x.right or x.left of given node x to be removed. Also, the left and right both

pointers of the node x are updated to point to its parent p. This is done to allow traversal

towards right track without using any synchronization technique. If there were any thread

stuck in the node x, they will go back to parent p and continue traversing.

Figure 5.1: The physical removal of node operation in contentional friendly manner

2. zigRightRotation

This is a part of lazy splaying operation. Depending on certain pre-condition at each node

based on access count of node and its left and right subtrees, different rotation operations are

performed. Traditional splay technique involves Zig, Zig-Zig and Zig-Zag rotation operations.

Those rotation operations are performed as shown in Fig. 4.4. However, in our lazy splaying

technique we will perform only Zig and Zig-Zag rotations.
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As rotation involves locking of few local nodes. Consider there are concurrent traversal that

is preempted on node x during rotation. The zigRightRotation shown in Fig. 5.2 causes node

l (left child of x ) to be shifted up and node x to be shifted down and becomes child of l.

The traversal preempted on node x will now avoid node l which was on traversal path before

rotation thus violates correctness if these nodes are in the correct path.

To solve this problem, the rotation operation is modified that produces the same output as

corresponding traditional rotation operation would produce. The algorithm for zigRightRota-

tion operation is described as Algorithm. 5.2. Three nodes l, x, and p are locked. A new node

x’ is introduced to take x’ s place in the tree. Node x is now flagged as removed. This way,

the rotation operation is preserved and the preempted traversal continues towards right and

correct path.

The zigLeftRotation is mirror operation for this. But, the remove flag of node x in left rotation

is flagged as left-rotate, to direct the thread towards correct path during traversal which will

be explained in detail in later operations.

Figure 5.2: The zig rotation of node in contentional friendly manner

3. zigLeftZagRightRotation
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This is the second rotation operation based on the other pre-condition at certain node. Tech-

nically its a two subsequent rotations (either left and right or right and left), but this is done

as single rotation that includes two steps.

This operation is performed as shown in Fig. 5.3 and causes multiple nodes to move their

positions in the tree. The grand child node r will move to top and both parent p and x

nodes moves down. The algorithm is desribed in Algorithm. 5.3 As in zigRightRotation,

we will introduce two new nodes p’ and x’ that will take place of original parent’s and x’s

position after rotation. parentp and x will be marked as removed with true and left-rotate

flag respectively. This way, the concurrent traversal preempted at x and p will follow right

traversal path after rotation as well. Thus, any concurrent traversal preempted on x or parent

will still be able to reach any node that was reachable before the rotation.

Figure 5.3: The zig-zag rotation of node in contentional friendly manner
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Algorithm 5.1 Physical node removal operation

function removeNode(Node parent, Node x)
if parent.remove == true then . Check if parent is physically removed.

return false
end if
if x = ⊥ then . Check if node x exists.

return false
end if
lock(parent)
lock(x)
if x.delete == false then . If node x is not lazily deleted do not remove it.

unlock(parent)
unlock(x)
return false

end if
if x.left 6= ⊥ ∧ x.right 6= ⊥ then . If node x has two children do not remove it.

unlock(parent)
unlock(x)
return false

else if x.left 6= ⊥ then . If node x has only left child.
child← x.left

else . If node x has only right child.
child← x.right

end if
if x == parent.left then . If node x is left child of a parent.

parent.left← child
else . If node x is right child of a parent.

parent.right← child
end if
x.left← parent
x.right← parent
x.remove← true
unlock(parent)
unlock(x)
return true

end function
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Algorithm 5.2 Zig right rotataion operation

function zigRightRotation(Node parent, Node x, Node l)
if parent.remove == true then . Check if parent is physically removed.

return false
end if
if x = ⊥ then

return false
end if
if l = ⊥ then

return false
end if
lock(parent)
lock(x)
lock(l)
lRight← l.right
xRight← x.right

. create new node x′ to replicate x
x′.key ← x.key
x′.left← lRight
x′.right← xRight
l.right← x′

if x == parent.left then . If node x is left child of a parent.
parent.left← l

else . If node x is right child of a parent.
parent.right← l

end if
x.remove← true
unlock(l)
unlock(x)
unlock(parent)
return true

end function
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Algorithm 5.3 Zig left Zag right rotataion operation

function zigLeftZagRightRotation(Node grand, Node parent, Node x, Node r)
if grand.remove == true then . Check if grand is physically removed.

return false
end if
if parent = ⊥ then

return false
end if
if x = ⊥ then

return false
end if
if r = ⊥ then

return false
end if
lock(grand)
lock(parent)
lock(x)
lock(r)
xLeft← x.left
rLeft← r.left
rRight← r.right
parentRight← parent.right

. create new node x′ to replicate x
x′.key ← x.key
x′.left← xLeft
x′.right← rLeft
r.left← x′

. create new node parent′ to replicate parent
parent′.key ← parent.key
parent′.left← rRight
parent′.right← parentRight
r.right← parent′

if parent == grand.left then . If node parent is left child of a grand.
grand.left← r

else . If node parent is right child of a grand.
grand.right← r

end if
x.remove← true
parent.remove← true
unlock(r)
unlock(x)
unlock(parent)
unlock(grand)
return true

end function
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5.2.2 Background Re-structuring Operations

In this section, we will discuss about the re-structuring process that will be executed independently

by the background thread. These operations are responsible for lazy structural adaptation with

long/semi splaying process. There are four operations involved in the background re-structuring

process and they are longSplayDFS, propagateCounter, backgroundLongSplay and splayNode.

1. longSplayDFS

This is a recursive depth first search algorithm that traverses entire tree starting from root of

the tree. It checks if any node is lazily deleted and is safe to remove then calls the removeNode

procedure. It then executes the propagateCounter procedure to update the access count coun-

ters at each node. Finally It checks if lazy splaying is to be done at the particular node and

calls the splayNode procedure to perform splaying. The algorithm is shown as Algorithm. 5.4.

2. propagateCounter

As the access counter of each node are updated on each access operation. It needs to propagate

towards the root once any change is made. This procedure updates the leftCnt, rightCnt based

on its up-to-date children’s counters. However, this is implemented asynchronously the values

may not be correct. However, this will not make any difference in the correctness of the

algorithm. The algorithm is as shown in Algorithm. 5.5.

3. backgroundLongSplay

This procedure runs in background in an infinite loop and repeatedly calls the longSplayDFS

procedure on the root node. That way it keeps on performing the splaying task on each node

and balances the tree height and keeps the frequently access items towards the root of the tree.

The algorithm is as shown in Algorithm. 5.6.

4. splayNode

This is the procedure to perform lazy splaying on the node that is accessed either by find

operation or insert operation. Depending on the access counter values of neighboring nodes

it performs either zig or zig-zag operation. zigRightrotation and zigLeftrotation are mirror

to each other and we call zig operation in general. zigLeftZagRightRotation and zigRightZa-

gLeftRotation are mirror to each other and we call zig-zag operation in general. Zig-zag is

carried out if the total number of accesses to the node right subtree is larger than the total

number of accesses to the node-parent and its right subtree. If zig-zag was not performed then

zig is performed if the total number of accesses to the node and its left subtree is larger than
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the total number of accesses to the node-parent and its right subtree. The algorithm works as

shown in Algorithm. 5.7.

Figure 5.4: Lazy splaying conditions

5.2.3 Basic Abstract Operations

In this section, we will discuss the primitive operations of BST that are responsible to preserve the

binary search tree property. Each of these operations requires traversal of the tree starting from the

root node. The three basic abstract operations are find, insert and delete. The helper procedures

that those basic abstract operations uses are getNext and isValid procedures. These procedures

are also same as Raynal’s idea [3], but we incorporated our lazy splaying technique in some of the

operations.
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Algorithm 5.4 Long splay using depth first search

function longSplayDFS(Node x)
if x = ⊥ then

return
end if
longSplayDFS(x.left)
longSplayDFS(x.right)
if x.left 6= ⊥ ∧ x.left.delete == true then

removeNode(x, x.left)
end if
if x.right 6= ⊥ ∧ x.right.delete == true then

removeNode(x, x.right)
end if
propagateCounter(x)
if x.left 6= ⊥ ∨ x.right 6= ⊥ then . If left or right child is present then check for splay

splayNode(parent, x, x.left, x.right)
else

return
end if

end function

Algorithm 5.5 Propagate access count towards root

function propagateCounter(Node x)
if x.left 6= ⊥ then

x.leftCnt← x.left.leftCnt + x.left.rightCnt + x.left.selfCnt
else

x.leftCnt← 0
end if
if x.right 6= ⊥ then

x.rightCnt← x.right.leftCnt + x.right.rightCnt + x.right.selfCnt
else

x.rightCnt← 0
end if

end function

Algorithm 5.6 Back ground long splaying

function backGroundLongSplay
while true do

longSplayDFS(root)
end while

end function
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Algorithm 5.7 Lazy splay operation

function splayNode(Node parent, Node lChild, Node rChild)
. check for zigRight and zigLeftZagRight only

nodeP lusLeftCount← lChild.selfCnt + lChild.leftCnt
parentP lusRightCount← parent.selfCnt + parent.rightCnt
nodeRightCount← lChild.rightCnt
if nodeRightCount ≥ parentP lusRightCount then . zigzag condition

grand← parent.parent
zigLeftZagRightRotation(grand, parent, lChild, lChild.right)
parent.leftCnt← lChild.right.rightCnt
lChild.rightCnt← lChild.right.leftCnt
lChild.right.rightCnt← lChild.right.rightCnt + parentP lusRightCount
lChild.right.leftCnt← lChild.right.leftCnt + nodeP lusLeftCount

else if nodeP lustLeftCount > parentP lusRightCount then . zig condition
grand← parent.parent
zigRightRotation(grand, parent, lChild)
parent.leftCnt← lChild.rightCnt
lChild.rightCnt← lChild.rightCnt + parentP lusRightCount

end if
. zigLeft and zigRightZagLeft are symmetric to above two cases
end function

1. getNext

This procedure is as described in Algorithm. 5.11. Given a node x as the input to this pro-

cedure, it will try to find the successor node in the traversal path. It checks if the node is

removed and if the flag is left-rotate then the node was concurrently removed by the zigLeft-

Rotation procedure. As, we know the left rotation causes the node (that is removed in this

procedure) to be moved donwards in a traditional rotation, so the getNext procedure needs to

direct the traversal towards the right child as it contains at least as many nodes in its path

that were in the path of the node before the rotation. If the flag is true it was removed either

by zigRightRotation or removeNode operation, so the traversal continues towards left child.

If the flag is false the node’s key value is checked and if the key matches with they key then

the traversal is finished. Otherwise, it continues as per general BST traversal rule, right when

key is greater than node.key or left when the key is less than node.key. The Fig. 5.3, Fig. 5.2,

Fig. 5.1 shows the traversal path situation for different cases.

2. isValid

This procedure is responsible to check the status of the node during concurrent access of the

node. It checks if the node is valid or safe to perform some operations on it. It works as in

Algorithm. 5.12. It checks if the node has been physically removed or not. It then checks, if

the key of the node matches to the input key and if they matches the traversal is finished. If
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they do not matches, it checks if the node has children or not on the place where key would

exist. This will be the place where new node is inserted.

3. find

This operation calls the getNext procedure in a loop until the node with key is found or NULL

is encountered. If it finds the desired node, it increments its selfCnt (access counter) and tries

lazySplaying on that node. The algorithm works as shown in Algorithm. 5.8.

4. insert

This operation works like a sequential insert operation. It starts from root and tries to find

the location of node to be inserted. However, this operation does modify some node, it needs

to lock that node. During locking process the concurrent operation might have modified the

node (like may have removed it). It needs to check if the node is valid, if the node is not valid,

it continues traversing to find the another place of insertion. As, the nodes are lazily deleted,

it checks if simply unflagging the delete status performs the insert operation. This operation

works as shown in Algorithm. 5.9. After insertion, it increments its selfCnt (access counter)

and tries lazySplaying on that node.

5. delete

This works similar to delete operation. It starts looking the node from the root. It will lock

the node before deletion. It uses isValid procedure to ensure it is deleting the targeted node.

Otherwise, it continues traversing to find the node to be deleted. This operation works as

shown in Algorithm. 5.10.
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Algorithm 5.8 Find operation

function find(key)
x← root
result← false
while ((next← getNext(x, key)) 6= ⊥) do

x← next
end while
if x.key == key then

if x.delete == false then
result← true
SplayNode(x, x.left, x.right)
x.selfCnt + +

end if
return result

end if
end function
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Algorithm 5.9 Insert operation

function insert(key)
x← root
result← false
Lbl:
while ((next← getNext(x, key)) 6= ⊥) do

x← next
end while
if next == ⊥ then

lock(x)
if isV alid(x, key) == false then

unlock(x)
x← next
go to Lbl: . node is invalid continue searching

else
if x.key == key then

if x.delete == true then . node x is lazily deleted, undelete it
x.delete← false
result← true

end if
else . create new node new to be inserted

new.key ← key
if x.key > key then

x.right← new
else

x.left← new
end if
result← true

end if
end if
SplayNode(x, x.left, x.right)
x.selfCnt + +
unlock(x)
return result

end if
end function
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Algorithm 5.10 Delete operation

function delete(key)
x← root
result← false
Lbl:
while ((next← getNext(x, key)) 6= ⊥) do

x← next
end while
if next == ⊥ then

lock(x)
if isV alid(x, key) == false then

unlock(x)
x← next
go to Lbl: . node is invalid continue searching

else
if x.key == key then

if x.delete == false then . delete the node lazily
x.delete← true
result← true

end if
end if

end if
end if
unlock(x)
return result

end function

Algorithm 5.11 Get next node operation

function getNext(Node x, key)
remove← x.remove
if remove = ”by − left− rot” then

next← x.right
else if remove == true then

next← x.left
else if x.key > key then

next← x.right
else if x.key == key then

next← ⊥
else

next← x.left
end if
return next

end function
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Algorithm 5.12 Is node valid operation

function isValid(Node x, key)
if x.remove == true then

return false
else if x.key == key then

return true
else if x.key > key then

next← x.right
else

next← x.left
end if
if next == ⊥ then return true
end if
return false

end function



www.manaraa.com

Chapter 6

Conclusion and Future Work

In this thesis report we have borrowed the different ideas of implementing concurrent binary search

trees and merged those ideas, modified it and presented the new approach of implementing self ad-

justing binary search tree. We proposed the implementation that is scalable and contention friendly

using the re-balancing technique called lazy splaying that enhances the performance as well as scal-

ability of self adjusting binary search trees. Unlike other blocking implementation of self-adjusting

binary search tree, our implementation is partial blocking that makes the algorithm efficient and

unlike other non-blocking implementation of self-adjusting binary search tree, our implementation

is simple as the algorithm doesn’t involve complexity of non-blocking implementations.

We conclude that, various techniques (contention friendly methodology, lazy splaying, semi/long

splaying, segregation of operations into abstract modification and structural adaptation) that we

have used in our implementation makes the algorithm scalable, efficient and easier to design on

multi-core environment. Contention-friendly methodology helps in enhancing the performance of

lock-based data structures. Lazy splaying tries to localize the rotations that reduces the overhead

of high contentions and avoids the sequential bottlenecks. This process however in concurreny will

still produce the self adjusting tree as global effect. Semi/ Long splaying helps in controlling the

unwanted monotonic growth of the tree and maintains the access counters up to date. Segregation

of operations into abstract modification and structural adaptation allows the binary search tree to

scale with a reasonably large number of threads.

Plugging in the lazy splaying and contention friendly methodology to the existing lock-based imple-

mentation of binary search tree to improve the performance of BST could be one of the future work.

Implementing this algorithm in Java and conducting experimental evaluation to compare the per-

formance of this algorithm against the existing algorithm will be an another interesting future work.
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Using the similar technique to implement another concurrent data structure could also be the next

future work.
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